News: Medical

Artificial muscles made from contracting fibers

MIT researchers, including professors Polina Anikeeva, Yoel Fink, and Cem Tasan, have developed a new fiber-based system that could be used as artificial muscles for robots, prosthetic limbs, or other mechanical and biomedical applications.  

New Microfluidics Devices

Microfluidics devices are tiny systems with microscopic channels that can be used for chemical or biomedical testing and research. In a potentially game-changing advance, MIT researchers have now incorporated microfluidics systems into individual fibers, making it possible to process much larger…  

Helping blood cells regenerate after radiation therapy

Patients with blood cancers such as leukemia and lymphoma are often treated by irradiating their bone marrow to destroy the diseased cells. After the treatment, patients are vulnerable to infection and fatigue until new blood cells grow back. MIT researchers have now devised a way to…  

Anikeeva menitoned as a "hero of science" for unlocking the brain

Five foot three and compact as a gazelle, Anikeeva is a marathon runner, a rock climber, and one heck of a scientist. She was born to a pair of mechanical engineers in the former Soviet Union, where she so excelled at academics that she was moved to an elite high school, then majored in physics…  

Ming Dao Research on Sickle Cells

One of the most common complications of sickle-cell disease occurs when deformed red blood cells clump together, blocking tiny blood vessels and causing severe pain and swelling in the affected body parts. A new study from MIT sheds light on how these events, known as vaso-occlusive pain…  

Cima part of team that developed new, more accurate neural implants

New technologies such as optogenetics have allowed us to identify similar microstructures in the brain. However, these techniques rely on liquid infusions into the brain, which prepare the regions to be studied to respond to light. These infusions are done with large needles, which do not have…  

New Neural Implants developed by Prof. Cima

New technologies such as optogenetics have allowed us to identify similar microstructures in the brain. However, these techniques rely on liquid infusions into the brain, which prepare the regions to be studied to respond to light. These infusions are done with large needles, which do not have…  

Study reveals why polymer stents failed

MIT Researchers in DMSE and the Institute for Medical Engineering have discovered why biodegradable polymer stents failed over time, hoping to eventually design and evaluate polymer stents more effectively. Jeff Grossman is among several MIT-based authors in a paper that appears in the   

Ultrathin needle can deliver drugs directly to the brain

MIT researchers have devised a miniaturized system that can deliver tiny quantities of medicine to brain regions as small as 1 cubic millimeter. This type of targeted dosing could make it possible to treat diseases that affect very specific brain circuits, without interfering with the normal…  

The best way of looking at the brain is from within

Members of Polina Anikeeva’s lab are trying to build devices that match the physical properties of neural tissue. “It is problematic to have something with the elastic properties of a knife inside something with the elastic properties of a chocolate pudding.” …