Yoel Fink

  • Professor of Materials Science
  • Joint Professor of Electrical Engineering and Computer Science
  • B.Sc. Chemical Engineering, Technion - Israel Institute of Technology, 1994
  • B.A. Physics, Technion - Israel Institute of Technology, 1995
  • Ph.D. Materials Science, MIT, 2000

Medical; Nanotechnology; Photonic Materials

Yoel Fink

Research

Professor Fink's research interests are in the theory, design, fabrication and characterization of multimaterial multifunctional fibers and fiber assemblies. Fibers are among the earliest forms of human expression, yet surprisingly have remained unchanged from ancient to modern times. Can fibers become highly functional devices? Can they see, hear, sense and communicate? Fink’s research group, fibers@mit, focuses on extending the frontiers of fiber materials from optical transmission to encompass electronic, optoelectronic and even acoustic properties. What makes these fibers unique is the combination of a multiplicity of disparate materials arranged in elaborate geometries with features down to 10 nanometers. Two complementary approaches towards realizing sophisticated functions are utilized: on the single-fiber level, the integration of a multiplicity of functional components into one fiber, and on the multiple-fiber level, the assembly of large-scale fiber arrays and fabrics. Fink’s multimaterial fibers offer unprecedented control over material properties and function on length scales spanning the nanometer to kilometer range.

Recent News

Flexible fiber battery

The rechargeable battery can be woven and washed, and could provide power for fiber-based electronic devices and sensors.  

FUTURE OF FABRICS

The rapidly growing field of advanced fibers and fabrics could transform many aspects of our lives  

Artificial muscles made from contracting fibers

MIT researchers, including professors Polina Anikeeva, Yoel Fink, and Cem Tasan, have developed a new fiber-based system that could be used as artificial muscles for robots, prosthetic limbs, or other mechanical and biomedical applications.  

New Microfluidics Devices

Microfluidics devices are tiny systems with microscopic channels that can be used for chemical or biomedical testing and research. In a potentially game-changing advance, MIT researchers have now incorporated microfluidics systems into individual fibers, making it possible to process much larger…  

Publications

2021

G. Loke et al., “Digital electronics in fibres enable fabric-based machine-learning inference”, Nature Communications, vol. 12, no. 1. Springer Science and Business Media LLC, 2021.
J. Park et al., “Electrochemical Modulation of Carbon Monoxide‐Mediated Cell Signaling”, Angewandte Chemie International Edition. Wiley, 2021.
M. ‐J. Antonini et al., “Customizing MRI‐Compatible Multifunctional Neural Interfaces through Fiber Drawing”, Advanced Functional Materials. Wiley, p. 2104857, 2021.

2020

Y. Lee, Canales, A., Loke, G., Kanik, M., Fink, Y., and Anikeeva, P. O., “Selectively Micro-Patternable Fibers via In-Fiber Photolithography”, ACS Central Science. American Chemical Society (ACS), 2020.
J. A. Frank et al., “In Vivo Photopharmacology Enabled by Multifunctional Fibers”, ACS Chemical Neuroscience, vol. 11, no. 22. American Chemical Society (ACS), pp. 3802-3813, 2020.
J. Park et al., “In situ electrochemical generation of nitric oxide for neuronal modulation”, Nature Nanotechnology, vol. 15, no. 8. Springer Science and Business Media LLC, pp. 690-697, 2020.
T. Khudiyev et al., “100 m Long Thermally Drawn Supercapacitor Fibers with Applications to 3D Printing and Textiles”, Advanced Materials. Wiley, p. 2004971, 2020.

2019

M. Kanik et al., “Strain-programmable fiber-based artificial muscle”, Science, vol. 365. American Association for the Advancement of Science, pp. 145-150, 2019.
G. Loke et al., “Structured multimaterial filaments for 3D printing of optoelectronics”, Nature Communications, vol. 10, no. 1. Springer Science and Business Media LLC, 2019.
S. Park, Loke, G., Fink, Y., and Anikeeva, P. O., “Flexible fiber-based optoelectronics for neural interfaces”, Chemical Society Reviews, vol. 48, no. 6. Royal Society of Chemistry (RSC), pp. 1826-1852, 2019.
D. Shahriari et al., “Scalable Fabrication of Porous Microchannel Nerve Guidance Scaffolds with Complex Geometries”, Advanced Materials, vol. 31, no. 30. Wiley, p. 1902021, 2019.
M. Hu et al., “Nanoparticle-Mediated Cavitation via CO2 Laser Impacting on Water: Concentration Effect, Temperature Visualization, and Core-Shell Structures”, Scientific Reports, vol. 9, no. 1. Springer Science and Business Media LLC, 2019.
M. M. Tousi et al., “Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing”, Polymers, vol. 11, no. 12. MDPI AG, p. 1985, 2019.

2018

M. Rein et al., “Diode fibres for fabric-based optical communications”, Nature, vol. 560. pp. 214-218, 2018.

2017

A. Canales, Park, S., Lu, C., Fink, Y., and Anikeeva, P. O., “Electronic, optical, and chemical interrogation of neural circuits with multifunctional fibers (Conference Presentation)”, in Biosensing and Nanomedicine X, San Diego, United States, 2017, p. 20.
C. Lu et al., “Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits”, Science Advances, vol. 3. p. e1600955, 2017.
T. Khudiyev, Hou, C., Stolyarov, A. M., and Fink, Y., “Sub-Micrometer Surface-Patterned Ribbon Fibers and Textiles”, Advanced Materials, vol. 29. p. 1605868, 2017.
T. Khudiyev, Hou, C., Stolyarov, A. M., and Fink, Y., “Surface Patterning: Sub-Micrometer Surface-Patterned Ribbon Fibers and Textiles (Adv. Mater. 22/2017)”, Advanced Materials, vol. 29. 2017.
Y. Guo et al., “Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces”, ACS Nano, vol. 11. pp. 6574-6585, 2017.
T. Khudiyev et al., “Electrostrictive microelectromechanical fibres and textiles”, Nature Communications, vol. 8. 2017.
B. Grena, Alayrac, J. -B., Levy, E., Stolyarov, A. M., Joannopoulos, J. D., and Fink, Y., “Thermally-drawn fibers with spatially-selective porous domains”, Nature Communications, vol. 8. 2017.
S. Park et al., “One-step optogenetics with multifunctional flexible polymer fibers”, Nature Neuroscience, vol. 20. pp. 612-619, 2017.
A. Gumennik et al., “Confined in-fiber solidification and structural control of silicon and silicon-germanium microparticles”, Proceedings of the National Academy of Sciences of the United States of America, vol. 114. pp. 7240-7245, 2017.
Y. Guo et al., “Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces”, Acs Nano, vol. 11. pp. 6574-6585, 2017.
T. Khudiyev, Hou, C., Stolyarov, A. M., and Fink, Y., “Sub-Micrometer Surface-Patterned Ribbon Fibers and Textiles”, Advanced Materials, vol. 29. p. 1605868, 2017.
S. Park et al., “One-step optogenetics with multifunctional flexible polymer fibers”, Nature Neuroscience, vol. 20. p. 612 - +, 2017.
L. Wei et al., “Optoelectronic Fibers via Selective Amplification of In-Fiber Capillary Instabilities”, Advanced Materials, vol. 29. p. 1603033, 2017.

2016

N. Zhang et al., “Azimuthally Polarized Radial Emission from a Quantum Dot Fiber Laser”, Acs Photonics, vol. 3. pp. 2275-2279, 2016.
M. Rein, Levy, E., Gumennik, A., Abouraddy, A. F., Joannopoulos, J. D., and Fink, Y., “Self-assembled fibre optoelectronics with discrete translational symmetry”, Nature Communications, vol. 7. p. 12807, 2016.
S. Shabahang et al., “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing”, Nature, vol. 534. p. 529 - +, 2016.
G. Tao et al., “Digital design of multimaterial photonic particles”, Proceedings of the National Academy of Sciences of the United States of America, vol. 113. pp. 6839-6844, 2016.
R. A. Koppes et al., “Thermally drawn fibers as nerve guidance scaffolds.”, Biomaterials, vol. 81. pp. 27-35, 2016.
N. Zhang, Liu, H., Stolyarov, A. M., Fink, Y., Sun, X., and Wei, L., “Quantum Dots Fiber Laser with Azimuthally Polarized Radial Emission”, in 2016 Conference on Lasers and Electro-Optics (cleo), New York: Ieee, 2016.

2015

G. Tao et al., “Infrared fibers”, Advances in Optics and Photonics, vol. 7. pp. 379-458, 2015.
A. Canales et al., “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.”, Nature biotechnology, vol. 33. pp. 277-84, 2015.
C. Hou et al., “Crystalline silicon core fibres from aluminium core preforms”, Nature Communications, vol. 6. p. 6248, 2015.

2013

D. Straus, Moftakhar, R., Fink, Y., Patel, D., and Byrne, R. W., “Application of Novel CO2 Laser-Suction Device”, Journal of Neurological Surgery Part B-Skull Base, vol. 74. pp. 358-363, 2013.
J. J. Kaufman et al., “In-fiber production of polymeric particles for biosensing and encapsulation”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110. pp. 15549-15554, 2013.
A. Gumennik et al., “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities”, Nature Communications, vol. 4. 2013.
G. Lestoquoy, Chocat, N., Wang, Z., Joannopoulos, J. D., and Fink, Y., “Fabrication and characterization of thermally drawn fiber capacitors”, Applied Physics Letters, vol. 102. 2013.
C. Hou et al., “Direct Atomic-Level Observation and Chemical Analysis of ZnSe Synthesized by in Situ High-Throughput Reactive Fiber Drawing”, Nano Letters, vol. 13. pp. 975-979, 2013.
D. Shemuly et al., “Asymmetric wave propagation in planar chiral fibers”, Optics Express, vol. 21. pp. 1465-1472, 2013.
A. M. Stolyarov et al., Multimaterial Functional Fibers. 2013.

2012

A. Gumennik et al., “All-in-Fiber Chemical Sensing”, Advanced Materials, vol. 24. p. 6005 - +, 2012.
N. Chocat, Lestoquoy, G., Wang, Z., Rodgers, D. M., Joannopoulos, J. D., and Fink, Y., “Piezoelectric Fibers for Conformal Acoustics”, Advanced Materials, vol. 24. pp. 5327-5332, 2012.
J. J. Kaufman et al., “Structured spheres generated by an in-fibre fluid instability (vol 487, pg 463, 2012)”, Nature, vol. 489. 2012.
J. J. Kaufman et al., “Structured spheres generated by an in-fibre fluid instability”, Nature, vol. 487. pp. 463-467, 2012.
A. M. Stolyarov, Wei, L., Sorin, F., Lestoquoy, G., Joannopoulos, J. D., and Fink, Y., “Fabrication and characterization of fibers with built-in liquid crystal channels and electrodes for transverse incident-light modulation”, Applied Physics Letters, vol. 101. 2012.
A. M. Stolyarov et al., “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers”, Optics Express, vol. 20. pp. 12407-12415, 2012.
A. M. Stolyarov et al., “Microfluidic directional emission control of an azimuthally polarized radial fibre laser”, Nature Photonics, vol. 6. pp. 229-233, 2012.
D. Shemuly, Stolyarov, A. M., Ruff, Z. M., Wei, L., Fink, Y., and Shapira, O., “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers”, Optics Express, vol. 20. pp. 6029-6035, 2012.
K. J. Rowland, Afshar, S. V., Stolyarov, A., Fink, Y., and Monro, T. M., “Bragg waveguides with low-index liquid cores”, Optics Express, vol. 20. pp. 48-62, 2012.
A. M. Stolyarov, Wei, L., Sorin, F., Lestoquoy, G., Joannopoulos, J. D., and Fink, Y., “All-in-Fiber Liquid Crystal Cell”, 2012 Conference on Lasers and Electro-Optics (cleo). 2012.
J. J. Kaufman et al., “In-fiber fabrication of size-controllable structured particles”, 2012 Conference on Lasers and Electro-Optics (cleo). 2012.

2011

J. J. Kaufman, Tao, G., Shabahang, S., Deng, D. S., Fink, Y., and Abouraddy, A. F., “Thermal Drawing of High-Density Macroscopic Arrays of Well-Ordered Sub-5-nm-Diameter Nanowires”, Nano Letters, vol. 11. pp. 4768-4773, 2011.
D. S. Deng, Nave, J. -C., Liang, X., Johnson, S. G., and Fink, Y., “Exploration of in-fiber nanostructures from capillary instability”, Optics Express, vol. 19. pp. 16273-16290, 2011.
J. Seco, Depauw, N., Danto, S., Paganeti, H., and Fink, Y., “QUALITATIVE EVALUATION OF PROTON RADIOGRAPHY FOR VIEWING DENSITY DIFFERENCES IN LUNG TUMORS: A MONTE CARLO STUDY”, Nuclear Technology, vol. 175. pp. 27-31, 2011.
N. Depauw, Danto, S., Bednarz, B., Paganetti, H., Fink, Y., and Seco, J., “PRELIMINARY STUDY OF PROTON RADIOGRAPHY IMAGING QUALITIES USING GEANT4 MONTE CARLO SIMULATIONS”, Nuclear Technology, vol. 175. pp. 6-10, 2011.
N. D. Orf et al., “Fiber draw synthesis”, Proceedings of the National Academy of Sciences of the United States of America, vol. 108. pp. 4743-4747, 2011.
S. Danto, Ruff, Z., Wang, Z., Joannopoulos, J. D., and Fink, Y., “Ovonic Memory Switching in Multimaterial Fibers”, Advanced Functional Materials, vol. 21. pp. 1095-1101, 2011.

2010

F. Sorin, Lestoquoy, G., Danto, S., Joannopoulos, J. D., and Fink, Y., “Resolving optical illumination distributions along an axially symmetric photodetecting fiber”, Optics Express, vol. 18. pp. 24264-24275, 2010.
S. Danto et al., “Fiber Field-Effect Device Via In Situ Channel Crystallization”, Advanced Materials, vol. 22. p. 4162 - +, 2010.
S. Egusa et al., “Multimaterial piezoelectric fibres”, Nature Materials, vol. 9. pp. 643-648, 2010.
Z. Ruff, Shemuly, D., Peng, X., Shapira, O., Wang, Z., and Fink, Y., “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns”, Optics Express, vol. 18. pp. 15697-15703, 2010.
O. Shapira, Abouraddy, A. F., Hu, Q., Shemuly, D., Joannopoulos, J. D., and Fink, Y., “Enabling coherent superpositions of iso-frequency optical states in multimode fibers”, Optics Express, vol. 18. pp. 12622-12629, 2010.
R. W. Ryan, Wolf, T., Spetzler, R. F., Coons, S. W., Fink, Y., and Preul, M. C., “Application of a flexible CO2 laser fiber for neurosurgery: laser-tissue interactions Laboratory investigation”, Journal of Neurosurgery, vol. 112. pp. 434-443, 2010.
D. S. Deng, Orf, N. D., Danto, S., Abouraddy, A. F., Joannopoulos, J. D., and Fink, Y., “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments”, Applied Physics Letters, vol. 96. 2010.
F. Sorin, Lestoquoy, G., Danto, S., Joannopoulos, J. D., and Fink, Y., Distributed Light Sensing with Convex Potential Fibers. 2010.
F. Sorin and Fink, Y., “Multimaterial Fiber Sensors”, Fourth European Workshop on Optical Fibre Sensors, vol. 7653. 2010.

2009

F. Sorin et al., “Exploiting Collective Effects of Multiple Optoelectronic Devices Integrated in a Single Fiber”, Nano Letters, vol. 9. pp. 2630-2635, 2009.
N. D. Orf, Baikie, I. D., Shapira, O., and Fink, Y., “Work function engineering in low-temperature metals”, Applied Physics Letters, vol. 94. 2009.
F. Sorin and Fink, Y., Multimaterial Multifunctional Fiber Devices. 2009.
D. S. Deng, Orf, N. D., Abouraddy, A. F., and Fink, Y., Novel Fabrication and Enhanced Photosensitivity of Selenium Filament Arrays by Optical-Fiber Thermal Drawing. 2009.

2008

D. S. Deng et al., “In-Fiber Semiconductor Filament Arrays”, Nano Letters, vol. 8. pp. 4265-4269, 2008.
P. T. Rakich, Fink, Y., and Soljacic, M., “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers”, Optics Letters, vol. 33. pp. 1690-1692, 2008.
D. Feller-Kopman et al., “Gas flow during Bronchoscopic ablation therapy causes gas emboli to the heart”, Chest, vol. 133. pp. 892-896, 2008.
D. S. Deng, Orf, N. D., Abouraddy, A. F., Stolyarov, A. M., and Fink, Y., Semiconductor Nano-filaments in Fiber. 2008.
P. T. Rakich, Soljacic, M., and Fink, Y., Efficient mid-IR spectral generation via 4(th) order cascaded-Raman amplification. 2008.

2007

F. Sorin et al., “Multimaterial photodetecting fibers: a geometric and structural study”, Advanced Materials, vol. 19. p. 3872 - +, 2007.
A. F. Abouraddy et al., “Towards multimaterial multifunctional fibres that see, hear, sense and communicate”, Nature Materials, vol. 6. pp. 336-347, 2007.
O. Shapira et al., Dynamic Surface Emitting Fiber Laser. 2007.
A. F. Abouraddy and Fink, Y., “Large-scale optical lensless imaging with geometric fiber constructs - art. no. 671407”, in Adaptive Coded Aperture Imaging and Non-Imaging Sensors, vol. 6714, 2007, pp. 71407-71407.

2006

M. Bayindir et al., “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication”, Ieee Journal of Selected Topics in Quantum Electronics, vol. 12. pp. 1202-1213, 2006.
A. F. Abouraddy et al., “Large-scale optical-field measurements with geometric fibre constructs”, Nature Materials, vol. 5. pp. 532-536, 2006.
C. Holsinger et al., “Use of the photonic band gap fiber assembly CO2 laser system in head and neck surgical oncology”, Laryngoscope, vol. 116. pp. 1288-1290, 2006.
O. Shapira et al., “Surface-emitting fiber lasers”, Optics Express, vol. 14. pp. 3929-3935, 2006.
M. Bayindir, Abouraddy, A. F., Arnold, J., Joannopoulos, J. D., and Fink, Y., “Thermal-sensing fiber devices by multimaterial codrawing”, Advanced Materials, vol. 18. p. 845 - +, 2006.
P. Bermel, Lidorikis, E., Fink, Y., and Joannopoulos, J. D., “Active materials embedded in photonic crystals and coupled to electromagnetic radiation”, Physical Review B, vol. 73. 2006.
M. Bayindir, Abouraddy, A. F., Shapira, O., Viens, J., Joannopoulos, J. D., and Fink, Y., “A novel fabrication technique by composite material processing: Integrated metal-insulator-semiconductor fibers and fiber devices”, in Material and Devices for Smart Systems II, vol. 888, 2006, pp. 359-364.

2005

M. Bayindir et al., “Integrated fibres for self-monitored optical transport”, Nature Materials, vol. 4. pp. 820-825, 2005.
G. Benoit, Kuriki, K., Viens, J. F., Joannopoulos, J. D., and Fink, Y., “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers”, Optics Letters, vol. 30. pp. 1620-1622, 2005.
K. Moazzami et al., “Detailed study of above bandgap optical absorption in HgCdTe”, Journal of Electronic Materials, vol. 34. pp. 773-778, 2005.
O. Shapira, Abouraddy, A. F., Joannopoulos, J. D., and Fink, Y., “Complete modal decomposition for optical waveguides”, Physical Review Letters, vol. 94. 2005.
M. Ibanescu, Johnson, S. G., Roundy, D., Fink, Y., and Joannopoulos, J. D., “Microcavity confinement based on an anomalous zero group-velocity waveguide mode”, Optics Letters, vol. 30. pp. 552-554, 2005.
M. Bayindir, Abouraddy, A. F., Sorin, F., Viens, J., Joannopoulos, J. D., and Fink, Y., Novel optoelectronic fibers codrawn from conducting semiconducting and insulating materials. 2005.

2004

M. Bayindir et al., “Metal-insulator-semiconductor optoelectronic fibres”, Nature, vol. 431. pp. 826-829, 2004.
K. Kuriki et al., “Hollow multilayer photonic bandgap fibers for NIR applications”, Optics Express, vol. 12. pp. 1510-1517, 2004.
M. Soljacic, Lidorikis, E., Ibanescu, M., Johnson, S. G., Joannopoulos, J. D., and Fink, Y., “Optical bistability and cutoff solitons in photonic bandgap fibers”, Optics Express, vol. 12. pp. 1518-1527, 2004.
E. Lidorikis, Soljacic, M., Ibanescu, M., Fink, Y., and Joannopoulos, J. D., “Cutoff solitons in axially uniform systems”, Optics Letters, vol. 29. pp. 851-853, 2004.
M. Ibanescu, Johnson, S. G., Roundy, D., Luo, C., Fink, Y., and Joannopoulos, J. D., “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides”, Physical Review Letters, vol. 92. 2004.
P. Bermel, Joannopoulos, J. D., Fink, Y., Lane, P. A., and Tapalian, C., “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides”, Physical Review B, vol. 69. 2004.
S. D. Hart and Fink, Y., “Interfacial energy and materials selection criteria in composite microstructured optical fiber fabrication”, in Engineered Porosity for Microphotonics and Plasmonics, vol. 797, 2004, pp. 193-199.
M. Skorobogatiy, Jacobs, S. A., Johnson, S. G., Meunier, M., and Fink, Y., “Modelling the impact of manufacturing imperfections on photonic crystal device performance: design of perturbation-tolerant PBG components”, in Photonic Crystal Materials and Nanostructures, vol. 5450, 2004, pp. 161-172.
M. Deopura, Fink, Y., and Schuh, C. A., “Optical and nanomechanical characterization of an onmidirectional reflector encompassing 850 nm wavelength”, in New Materials for Microphotonics, vol. 817, 2004, pp. 95-100.

2003

G. Benoit, Hart, S. D., Temelkuran, B., Joannopoulos, J. D., and Fink, Y., “Static and dynamic properties of optical microcavities in photonic bandgap yarns”, Advanced Materials, vol. 15. p. 2053 - +, 2003.
M. Skorobogatiy et al., “Quantitative characterization of higher-order mode converters in weakly multimoded fibers”, Optics Express, vol. 11. pp. 2838-2847, 2003.
T. D. Engeness et al., “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers”, Optics Express, vol. 11. pp. 1175-1196, 2003.
M. Soljacic, Ibanescu, M., Johnson, S. G., Joannopoulos, J. D., and Fink, Y., “Optical bistability in axially modulated OmniGuide fibers”, Optics Letters, vol. 28. pp. 516-518, 2003.
M. Skorobogatiy, Johnson, S. G., Jacobs, S. A., and Fink, Y., “Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions”, Physical Review E, vol. 67. 2003.
M. Ibanescu et al., “Analysis of mode structure in hollow dielectric waveguide fibers”, Physical Review E, vol. 67. 2003.
S. Hart and Fink, Y., “Cylindrical photonic bandgap fibers for high power laser transmission”, in Laser-Induced Damage in Optical Materials: 2003, vol. 5273, 2003, pp. 309-311.
E. Lidorikis et al., “Modeling of nano-photonics”, in Nano-and Micro-Optics for Information Systems, vol. 5225, 2003, pp. 7-19.
M. Deopura, Fink, Y., and Schuh, C. A., Optical and nanomechanical chararacterization of a tin sulfide-silica multilayer system. 2003.
M. Soljacic et al., “All-optical switching using optical bistability in non-linear photonic crystals”, in Photonic Crystal Materials and Devices, vol. 5000, 2003, pp. 200-214.

2002

B. Temelkuran, Hart, S. D., Benoit, G., Joannopoulos, J. D., and Fink, Y., “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO(2) laser transmission”, Nature, vol. 420. pp. 650-653, 2002.
M. Skorobogatiy et al., “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion”, Journal of the Optical Society of America B-Optical Physics, vol. 19. pp. 2867-2875, 2002.
M. Soljacic, Ibanescu, M., Johnson, S. G., Fink, Y., and Joannopoulos, J. D., “Optimal bistable switching in nonlinear photonic crystals”, Physical Review E, vol. 66. 2002.
M. Skorobogatiy, Jacobs, S. A., Johnson, S. G., and Fink, Y., “Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates”, Optics Express, vol. 10. pp. 1227-1243, 2002.
S. G. Johnson, Ibanescu, M., Skorobogatiy, M. A., Weisberg, O., Joannopoulos, J. D., and Fink, Y., “Perturbation theory for Maxwell\textquoterights equations with shifting material boundaries”, Physical Review E, vol. 65. 2002.
S. D. Hart, Maskaly, G. R., Temelkuran, B., Prideaux, P. H., Joannopoulos, J. D., and Fink, Y., “External reflection from omnidirectional dielectric mirror fibers”, Science, vol. 296. pp. 510-513, 2002.
S. G. Johnson et al., Breaking the glass ceiling: Hollow OmniGuide fibers. 2002.
S. G. Johnson et al., “Breaking the glass ceiling: hollow OmniGuide fibers”, in Photonic Bandgap Materials and Devices, vol. 4655, 2002, pp. 1-15.
M. R. Black et al., “Studies of intersubband transitions in arrays of Bi nanowire samples using optical transmission”, in Nanophase and Nanocomposite Materials Iv, vol. 703, 2002, pp. 439-444.

2001

S. G. Johnson et al., “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers”, Optics Express, vol. 9. pp. 748-779, 2001.
B. Temelkuran, Thomas, E. L., Joannopoulos, J. D., and Fink, Y., “Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity”, Optics Letters, vol. 26. pp. 1370-1372, 2001.
M. Deopura, Ullal, C. K., Temelkuran, B., and Fink, Y., “Dielectric omnidirectional visible reflector”, Optics Letters, vol. 26. pp. 1197-1199, 2001.
Y. Fink, Thomas, E. L., Urbas, A., and Xenidou, M., “Self assembling block copolymer structures as photonic crystals.”, Abstracts of Papers of the American Chemical Society, vol. 221. pp. U233 - U233, 2001.
A. C. Edrington et al., “Polymer-based photonic crystals”, Advanced Materials, vol. 13. pp. 421-425, 2001.

2000

M. Ibanescu, Fink, Y., Fan, S., Thomas, E. L., and Joannopoulos, J. D., “An all-dielectric coaxial waveguide”, Science, vol. 289. pp. 415-419, 2000.
A. Urbas, Sharp, R., Fink, Y., Thomas, E. L., Xenidou, M., and Fetters, L. J., “Tunable block copolymer/homopolymer photonic crystals”, Advanced Materials, vol. 12. pp. 812-814, 2000.

1999

Y. Fink, Urbas, A. M., Bawendi, M. G., Joannopoulos, J. D., and Thomas, E. L., “Block copolymers as photonic bandgap materials”, Journal of Lightwave Technology, vol. 17. pp. 1963-1969, 1999.
Y. Fink, Ripin, D. J., Fan, S. H., Chen, C. P., Joannopoulos, J. D., and Thomas, E. L., “Guiding optical light in air using an all-dielectric structure”, Journal of Lightwave Technology, vol. 17. pp. 2039-2041, 1999.
A. Urbas, Fink, Y., and Thomas, E. L., “One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends”, Macromolecules, vol. 32. pp. 4748-4750, 1999.

1998

Y. Fink et al., “A dielectric omnidirectional reflector”, Science, vol. 282. pp. 1679-1682, 1998.
J. N. Winn, Fink, Y., Fan, S. H., and Joannopoulos, J. D., “Omnidirectional reflection from a one-dimensional photonic crystal”, Optics Letters, vol. 23. pp. 1573-1575, 1998.

1997

Y. Fink, Chen, C., and Marable, W. P., “Halo formation and chaos in root-mean-square matched beams propagating through a periodic solenoidal focusing channel”, Physical Review E, vol. 55. pp. 7557-7564, 1997.
Y. Fink, Chen, C., and Marable, W. P., “Nonlinear space-charge effects in high-brightness beams”, in Advanced Accelerator Concepts, 1997, pp. 782-792.