Robert J. Macfarlane

  • Paul M. Cook Assistant Professor in Materials Science and Engineering
  • B. A. in Biochemistry, Willamette University 2004
  • M. Sc. in Chemistry, Yale University, 2006
  • Ph. D. in Chemistry, Northwestern University, 2013

Biomaterials; Materials Chemistry; Mechanical Behavior of Materials; Nanotechnology; Photonic Materials; Polymers; Self Assembly; Composites

Robert J. Macfarlane

Research

Both inorganic nanoparticles and organic polymers offer unique advantages in the synthesis of materials with controllable properties (optical, magnetic, electrical) and chemical reactivities: polymers are highly modular structures that can incorporate many different chemical functional groups, and inorganic nanoparticles have size, shape, and material composition dependent properties such as surface plasmon resonances. Composites of these materials could result in powerful synthesis schemes for fabricating materials with controllable emergent properties, but a fundamental challenge in this area of research is developing self-assembly approaches to create polymer and nanoparticle composite materials where nanoscale order can be generated in a predictable and controllable manner. Research in the Macfarlane lab is focused on developing a set of design principles for synthesizing new inorganic/organic composite materials, where nanoscale structure can be manipulated to tune the emergent physical properties of a bulk material. These structures have the potential to significantly impact energy-related research via light manipulation (e.g. photonic band gaps or plasmonic metamaterials), electronic device fabrication (e.g. semiconducting substrates or data storage devices), and environmental and medical research (e.g. hydrogels for sustained drug delivery).

Recent News

Prof Macfarlane Awarded AFOSR Grant

Congratulations to Professor Rob Macfarlane for being awarded an AFOSR Grant!  "The Air Force Office of Scientific Research today announced that it will award approximately $20.8 million in grants to 58 scientists and engineers from 41 research institutions and small businesses who…   more

Programming Material Structure

Our friends at the Materials Processing Center recently featured a profile of DMSE Professor Rob Macfarlane. Professor Macfarlane constructs nanoparticle-based crystals by programming interactions of synthetic polymers and biopolymers at the molecular level. …   more

New Faculty

Three new faculty members have joined the Department of Materials Science and Engineering at MIT. We're excited to see them flourish and grow as professionals helping teach the next generation of materials scientists! Please join us in welcoming our newest faculty…   more

Publications

2019

L. Z. Zornberg, Gabrys, P. A., and Macfarlane, R. J., “Optical Processing of DNA-Programmed Nanoparticle Superlattices”, Nano Letters. American Chemical Society (ACS), 2019.
J. M. Kubiak and Macfarlane, R. J., “Forming Covalent Crosslinks between Polymer‐Grafted Nanoparticles as a Route to Highly Filled and Mechanically Robust Nanocomposites”, Advanced Functional Materials. Wiley, p. 1905168, 2019.
P. A. Gabrys, Zornberg, L. Z., and Macfarlane, R. J., “Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices”, Small, vol. 15, no. 26. p. 1805424, 2019.
P. J. Santos, Cao, Z., Zhang, J., Alexander-Katz, A., and Macfarlane, R. J., “Dictating Nanoparticle Assembly via Systems-Level Control of Molecular Multivalency”, Journal of the American Chemical Society. American Chemical Society (ACS), 2019.
P. J. Santos, Cheung, T. C., and Macfarlane, R. J., “Assembling Ordered Crystals with Disperse Building Blocks”, Nano Letters, vol. 19, no. 8. American Chemical Society (ACS), pp. 5774-5780, 2019.

2018

P. A. Gabrys, Seo, S. E., Wang, M. X., Oh, E. B., Macfarlane, R. J., and Mirkin, C. A., “Lattice Mismatch in Crystalline Nanoparticle Thin Films”, Nano Letters, vol. 18. pp. 579-585, 2018.
D. J. Lewis, Gabrys, P. A., and Macfarlane, R. J., “DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents”, Langmuir, vol. 34, no. 49. American Chemical Society (ACS), pp. 14842-14850, 2018.

2016

M. X. Wang et al., “Epitaxy: Programmable Atom Equivalents Versus Atoms”, ACS Nano, vol. 11, no. 1. American Chemical Society (ACS), pp. 180-185, 2016.
J. Zhang, Santos, P. J., Gabrys, P. A., Lee, S., Liu, C., and Macfarlane, R. J., “Self-Assembling Nanocomposite Tectons”, Journal of the American Chemical Society, vol. 138, no. 50. American Chemical Society (ACS), pp. 16228-16231, 2016.
Y. Kim, Macfarlane, R. J., Jones, M. R., and Mirkin, C. A., “Transmutable nanoparticles with reconfigurable surface ligands”, Science, vol. 351, no. 6273. American Association for the Advancement of Science (AAAS), pp. 579-582, 2016.

2015

R. V. Thaner et al., “Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly”, Nano Letters, vol. 15. pp. 5545-5551, 2015.

2014

R. J. Macfarlane et al., “Improving Brush Polymer Infrared One-Dimensional Photonic Crystals via Linear Polymer Additives”, Journal of the American Chemical Society, vol. 136. pp. 17374-17377, 2014.
A. J. Senesi et al., “Oligonucleotide Flexibility Dictates Crystal Quality in DNA-Programmable Nanoparticle Superlattices”, Advanced Materials, vol. 26. pp. 7235-7240, 2014.
R. J. Macfarlane et al., “Importance of the DNA "bond" in programmable nanoparticle crystallization”, Proceedings of the National Academy of Sciences of the United States of America, vol. 111. pp. 14995-15000, 2014.
A. J. Senesi et al., “Stepwise and epitaxial growth of DNA-programmable nanoparticle superlattices”, Abstracts of Papers of the American Chemical Society, vol. 248. 2014.
C. Mirkin, Macfarlane, R. J., Auyeung, E., de la Cruz, M. O., and O'Brien, M. N., “Nucleic acid-modified nanostructures as programmable atom equivalents: Forging a new "Table of Elements"”, Abstracts of Papers of the American Chemical Society, vol. 247. 2014.

2013

S. Kewalramani et al., “Counterion Distribution Surrounding Spherical Nucleic Acid-Au Nanoparticle Conjugates Probed by Small-Angle X-ray Scattering”, Acs Nano, vol. 7. pp. 11301-11309, 2013.
S. L. Hellstrom et al., “Epitaxial Growth of DNA-Assembled Nanoparticle Superlattices on Patterned Substrates”, Nano Letters, vol. 13. pp. 6084-6090, 2013.
R. J. Macfarlane, Jones, M. R., Lee, B., Auyeung, E., and Mirkin, C. A., “Topotactic Interconversion of Nanoparticle Superlattices”, Science, vol. 341. pp. 1222-1225, 2013.
C. Zhang et al., “A general approach to DNA-programmable atom equivalents”, Nature Materials, vol. 12. pp. 741-746, 2013.
Y. Kim, Macfarlane, R. J., and Mirkin, C. A., “Dynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors”, Journal of the American Chemical Society, vol. 135. pp. 10342-10345, 2013.
R. J. Macfarlane, O'Brien, M. N., Petrosko, S. H., and Mirkin, C. A., “Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New "Table of Elements"”, Angewandte Chemie-International Edition, vol. 52. pp. 5688-5698, 2013.
A. J. Senesi et al., “Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices”, Angewandte Chemie-International Edition, vol. 52. pp. 6624-6628, 2013.

2012

E. Auyeung, Macfarlane, R. J., Choi, C. H. J., Cutler, J. I., and Mirkin, C. A., “Transitioning DNA-Engineered Nanoparticle Superlattices from Solution to the Solid State”, Advanced Materials, vol. 24. pp. 5181-5186, 2012.
T. I. N. G. Li, Sknepnek, R., Macfarlane, R. J., Mirkin, C. A., and de la Cruz, M. O., “Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations”, Nano Letters, vol. 12. pp. 2509-2514, 2012.
M. R. Jones, Macfarlane, R. J., Lee, B., Prigodich, A. E., and Mirkin, C. A., “Directional assembly interactions in oligonucleotide-modified anisotropic gold nanostructures”, Abstracts of Papers of the American Chemical Society, vol. 243. 2012.
R. J. Macfarlane, Lee, B., Jones, M. R., Harris, N., Schatz, G. C., and Mirkin, C. A., “Nanoparticle superlattice engineering with DNA”, Abstracts of Papers of the American Chemical Society, vol. 243. 2012.
K. L. Young et al., “Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces”, Proceedings of the National Academy of Sciences of the United States of America, vol. 109. pp. 2240-2245, 2012.
E. Auyeung et al., “Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach”, Nature Nanotechnology, vol. 7. pp. 24-28, 2012.

2011

M. R. Jones, Macfarlane, R. J., Prigodich, A. E., Patel, P. C., and Mirkin, C. A., “Nanoparticle Shape Anisotropy Dictates the Collective Behavior of Surface-Bound Ligands”, Journal of the American Chemical Society, vol. 133. pp. 18865-18869, 2011.
R. J. Macfarlane, Lee, B., Jones, M. R., Harris, N., Schatz, G. C., and Mirkin, C. A., “Nanoparticle Superlattice Engineering with DNA”, Science, vol. 334. pp. 204-208, 2011.
N. Harris, Jones, M. R., Macfarlane, R. J., Mirkin, C. A., and Schatz, G. C., “Plasmonic properties of 1D, DNA-linked, Au nanoprism arrays”, Abstracts of Papers of the American Chemical Society, vol. 242. 2011.
M. R. Jones, Osberg, K. D., Macfarlane, R. J., Langille, M. R., and Mirkin, C. A., “Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures”, Chemical Reviews, vol. 111. pp. 3736-3827, 2011.

2010

M. R. Jones et al., “DNA-nanoparticle superlattices formed from anisotropic building blocks”, Nature Materials, vol. 9. pp. 913-917, 2010.
R. J. Macfarlane and Mirkin, C. A., “Colloidal Assembly via Shape Complementarity”, Chemphyschem, vol. 11. pp. 3215-3217, 2010.
R. J. Macfarlane et al., “Establishing the Design Rules for DNA-Mediated Colloidal Crystallization”, Angewandte Chemie-International Edition, vol. 49. pp. 4589-4592, 2010.

2009

S. J. Hurst, Hill, H. D., Macfarlane, R. J., Wu, J., Dravid, V. P., and Mirkin, C. A., “Synthetically Programmable DNA Binding Domains in Aggregates of DNA-Functionalized Gold Nanoparticles”, Small, vol. 5. pp. 2156-2161, 2009.
R. J. Macfarlane, Lee, B., Hill, H. D., Senesi, A. J., Seifert, S., and Mirkin, C. A., “Assembly and organization processes in DNA-directed colloidal crystallization”, Proceedings of the National Academy of Sciences of the United States of America, vol. 106. pp. 10493-10498, 2009.

2008

H. D. Hill, Macfarlane, R. J., Senesi, A. J., Lee, B., Park, S. Y., and Mirkin, C. A., “Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers”, Nano Letters, vol. 8. pp. 2341-2344, 2008.