Robert J. Macfarlane
- Associate Professor of Materials Science and Engineering
- B. A. in Biochemistry, Willamette University 2004
- M. Sc. in Chemistry, Yale University, 2006
- Ph. D. in Chemistry, Northwestern University, 2013
- 13-5056
- rmacfarl@mit.edu
Biomaterials; Materials Chemistry; Mechanical Behavior of Materials; Nanotechnology; Photonic Materials; Polymers; Self Assembly; Composites

Research
Both inorganic nanoparticles and organic polymers offer unique advantages in the synthesis of materials with controllable properties (optical, magnetic, electrical) and chemical reactivities: polymers are highly modular structures that can incorporate many different chemical functional groups, and inorganic nanoparticles have size, shape, and material composition dependent properties such as surface plasmon resonances. Composites of these materials could result in powerful synthesis schemes for fabricating materials with controllable emergent properties, but a fundamental challenge in this area of research is developing self-assembly approaches to create polymer and nanoparticle composite materials where nanoscale order can be generated in a predictable and controllable manner. Research in the Macfarlane lab is focused on developing a set of design principles for synthesizing new inorganic/organic composite materials, where nanoscale structure can be manipulated to tune the emergent physical properties of a bulk material. These structures have the potential to significantly impact energy-related research via light manipulation (e.g. photonic band gaps or plasmonic metamaterials), electronic device fabrication (e.g. semiconducting substrates or data storage devices), and environmental and medical research (e.g. hydrogels for sustained drug delivery).
Recent News
Making nanoparticle building blocks for new materials
February 17, 2023
Lecture series aims to demystify, celebrate tenure
December 13, 2022
Tenure Talks cover programmable matter, atomic-scale analysis
November 16, 2022
The School of Engineering's tenured professors of 2022
October 24, 2022
DMSE’s tenured engineers of 2022
August 23, 2022
New technique reveals how crystals form on surfaces
April 6, 2020
How do crystals form on surfaces?
April 1, 2020