Juejun (JJ) Hu
- John F. Elliott Professor of Materials Science and Engineering
- B.S. in Materials Science and Engineering, Tsinghua University, 2004
- Ph.D. in Materials Science and Engineering, MIT, 2009
- 13-4054
- hujuejun@MIT.EDU
Electronic Materials; Nanotechnology; Photonic Materials; Semiconductors

Research
Professor Hu's research group's main research theme focuses on novel materials and devices to exploit interactions of light with matter. Their work covers a wide spectrum of applications including:
- On-chip sensing and spectroscopy: capitalizing on a digital Fourier-Transform (dFT) technology the group invented, they have created miniaturized and rugged sensors that can be mass produced using standard CMOS manufacturing technologies for industrial process control, medical imaging, and space applications.
- Optical phase change materials and meta-optics: optical phase change materials are a class of materials whose optical properties are drastically modified upon undergoing a solid-state phase transition. Using these intriguing materials, the group has pioneered a series of cutting-edge reconfigurable optical devices that can be re-programmed to adapt to specific tasks.
- 2-D material photonic integration: 2-D materials offer many tantalizing properties that conventional optical materials do not possess. However, integration of these materials onto an integrated photonics platform can be challenging. The Hu group addresses the challenge by developing new monolithic integration schemes on 2-D materials, enabling novel photonic devices with unprecedented performance.
- Flexible photonics and polymer photonics: traditionally, photonic circuits are fabricated on rigid substrates such as semiconductors or glasses. The group has developed novel methods to make photonic devices flexible, stretchable, and rugged without compromising their optical performance. They are exploring emerging applications of such devices in biomedical monitoring and high-speed data communications.
- Optics for solar energy: the Hu group has demonstrated novel optical architectures and module integration technologies that can effectively boost the efficiency of photovoltaic modules while maintaining a footprint and cost comparable to standard silicon flat panels.
- Magneto-optical isolation: they are developing chip-scale one-way valves for photons that will become an integral part of next-generation optical communication and navigation systems.
Recent News
A path to more efficient diagnoses
March 22, 2023
New “metalens” shifts focus without tilting or moving
February 22, 2021
Engineers produce a fisheye lens that’s completely flat
September 18, 2020
JJ Hu: Exploring interactions of light and matter
July 8, 2020
Researchers discover a new way to control infrared light
February 3, 2020
Publications
2021
K. Aryana et al., “Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te”, Nature Communications, vol. 12, no. 1. Springer Science and Business Media LLC, 2021.
S. Yu et al., “On-chip optical tweezers based on freeform optics”, Optica, vol. 8, no. 3. The Optical Society, p. 409, 2021.
N. Peard et al., “Magneto-optical properties of InSb for infrared spectral filtering”, Journal of Applied Physics, vol. 129, no. 20. AIP Publishing, p. 203104, 2021.
H. Lin et al., “Monolithic chalcogenide glass waveguide integrated interband cascaded laser”, Optical Materials Express, vol. 11, no. 9. The Optical Society, p. 2869, 2021.
C. Fowler et al., “A Deep Neural Network Near-Universal Dielectric Meta-Atom Generator”, in OSA Optical Design and Fabrication 2021 (Flat Optics, Freeform, IODC, OFT), 2021, p. JW4D.4.
Y. Zhang et al., “Electrically Reconfigurable Nonvolatile Metasurface based on Phase Change Materials”, in OSA Optical Design and Fabrication 2021 (Flat Optics, Freeform, IODC, OFT), 2021, p. FTu4A.5.
2020
M. Y. Shalaginov et al., “Reconfigurable all-dielectric metalens based on phase change materials”, Active Photonic Platforms XII. SPIE, 2020.
2019
C. Su et al., “Waterproof molecular monolayers stabilize 2D materials”, Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, p. 201909500, 2019.
2018
T. Gu et al., “Reconfigurable photonics enabled by optical phase change materials (Conference Presentation)”, in Silicon Photonics: From Fundamental Research to Manufacturing, Strasbourg, France, 2018, p. 5.
A. Yadav et al., “Thermal conductivity of chalcogenide glasses measured by Raman spectroscopy”, in Advanced Optics for Defense Applications: UV through LWIR III, Orlando, United States, 2018, p. 23.
M. Kang et al., “Advances in infrared GRIN: a review of novel materials towards components and devices”, in Advanced Optics for Defense Applications: UV through LWIR III, Orlando, United States, 2018, p. 9.
S. Serna et al., “Nonlinear optical properties of integrated GeSbS chalcogenide waveguides”, Photonics Research, vol. 6. p. B37, 2018.
A. Tauke-Pedretti et al., “Hybrid Integration of III–V Solar Microcells for High-Efficiency Concentrated Photovoltaic Modules”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 24. pp. 1-9, 2018.
H. Zheng et al., “Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics”, in 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, 2018, pp. 1-2.
J. Chou et al., “Broadband low-loss optical phase change materials and devices (Conference Presentation)”, in Photonic and Phononic Properties of Engineered Nanostructures VIII, San Francisco, United States, 2018, p. 16.
J. Hu et al., “Chalcogenide glass-on-2D-materials photonics (Conference Presentation)”, in Silicon Photonics XIII, San Francisco, United States, 2018, p. 31.
H. Lin et al., “Publisher Correction: Chalcogenide glass-on-graphene photonics”, Nature Photonics, vol. 12. pp. 185-185, 2018.
Q. Du, Fakhrul, T., Zhang, Y., Hu, J., and Ross, C. A., “Monolithic magneto-optical oxide thin films for on-chip optical isolation”, MRS Bulletin, vol. 43. pp. 413-418, 2018.
Q. Du et al., “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide”, Photonics Research, vol. 6. p. 506, 2018.
L. Li et al., “Monolithically integrated stretchable photonics”, Light: Science & Applications, vol. 7. p. 17138, 2018.
L. Zhang et al., “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics”, Nature Communications, vol. 9. 2018.
Q. Du et al., “Monolithic On-chip Magneto-optical Isolator with 3 dB Insertion Loss and 40 dB Isolation Ratio”, ACS Photonics, vol. 5. pp. 5010-5016, 2018.
S. Deckoff-Jones et al., “Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors”, Journal of Optics, vol. 20. p. 044004, 2018.
H. Lin et al., “Mid-infrared integrated photonics on silicon: a perspective”, Nanophotonics, vol. 7. pp. 393-420, 2018.
L. Li et al., “High-performance flexible waveguide-integrated photodetectors”, Optica, vol. 5. pp. 44-51, 2018.
Q. Zhang, Zhang, Y., Li, J., Soref, R., Gu, T., and Hu, J., “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit”, Optics Letters, vol. 43. pp. 94-97, 2018.
D. Li et al., “Spectrum Splitting Micro-Concentrator Assembly for Laterally-arrayed Multi-Junction Photovoltaic Module”, in Conference on Lasers and Electro-Optics, San Jose, California, 2018, p. AW3O.3.
L. Li et al., “Stretchable Integrated Microphotonics”, in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), Zurich, 2018, p. NoW2J.3.
D. M. Kita et al., “High-resolution on-chip digital Fourier transform spectroscopy”, in Conference on Lasers and Electro-Optics, San Jose, California, 2018, p. SF1A.1.
H. Lin et al., “Mid-infrared waveguide integrated chalcogenide glass on black phosphorus photodetectors”, in Conference on Lasers and Electro-Optics, San Jose, California, 2018, p. SM2I.8.
2017
H. Lin et al., “Integrated photonics for infrared spectroscopic sensing”, Barcelona, Spain, 2017, p. 102490G.
K. T. Faber et al., “The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop”, J. Am. Ceram. Soc., vol. 100. p. 1777--1803, 2017.
D. M. Kita et al., “On-Chip Infrared Spectroscopic Sensing: Redefining the Benefits of Scaling”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 23. pp. 340-349, 2017.
Y. S. Zhang, Wang, X., Zhang, W., Huo, W. T., Hu, J., and Zhang, L. C., “Elevated tensile properties of Ti-O alloy with a novel core-shell structure”, Materials Science and Engineering: A, vol. 696. pp. 360-365, 2017.
J. Qin et al., “Ultrahigh Figure-of-Merit in Metal–Insulator–Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films”, ACS Photonics, vol. 4. pp. 1403-1412, 2017.
T. Gu and Hu, J., “On-chip Infrared Spectroscopic Sensing”, in Proceedings of The 7th International Multidisciplinary Conference on Optofluidics 2017, Singapore, 2017, p. 4408.
S. Novak et al., “Positron annihilation lifetime spectroscopy (PALS) studies of gamma irradiated As2Se3 films used in MIR integrated photonics”, Journal of Non-Crystalline Solids, vol. 455. pp. 29-34, 2017.
Q. Du et al., “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices”, Optics Letters, vol. 42. p. 587, 2017.
H. Lin et al., “Chalcogenide glass-on-graphene photonics”, Nature Photonics, vol. 11. pp. 798-805, 2017.
S. Novak et al., “Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films”, ACS Applied Materials & Interfaces, vol. 9. pp. 26990-26995, 2017.
S. Serna et al., “Linear and third order nonlinear optical properties of GeSbS chalcogenide integrated waveguides”, in 2017 IEEE 14th International Conference on Group IV Photonics (GFP), Berlin, Germany, 2017, pp. 109-110.
L. Li et al., “(Invited) Mechanically Flexible Integrated Photonic Systems for Sensing and Communications”, ECS Transactions, vol. 77. pp. 37-46, 2017.
D. Kita et al., “On-chip infrared sensors: redefining the benefits of scaling”, San Francisco, California, United States, 2017, p. 100810F.
J. Qin et al., “Ultrahigh Figure-of-Merit in Metal-Insulator-Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films”, Acs Photonics, vol. 4. pp. 1403-1412, 2017.
L. Li et al., “A new twist on glass: A brittle material enabling flexible integrated photonics”, International Journal of Applied Glass Science, vol. 8. pp. 61-68, 2017.
Q. Du et al., “Gamma radiation effects in amorphous silicon and silicon nitride photonic devices”, Optics Letters, vol. 42. pp. 587-590, 2017.
S. Novak et al., “Positron annihilation lifetime spectroscopy (PALS) studies of gamma irradiated As2Se3 films used in MIR integrated photonics”, Journal of Non-Crystalline Solids, vol. 455. pp. 29-34, 2017.
C. N. Arutt et al., “The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMs)”, Semiconductor Science and Technology, vol. 32. p. 013005, 2017.
T. Gu et al., “Wafer Integrated Micro-scale Concentrating Photovoltaics”, in 13th International Conference on Concentrator Photovoltaic Systems (cpv-13), vol. 1881, Melville: Amer Inst Physics, 2017, pp. 080004-1.
H. Lin et al., “Integrated photonics for infrared spectroscopic sensing”, in Integrated Photonics: Materials, Devices, and Applications Iv, vol. 10249, Bellingham: Spie-Int Soc Optical Engineering, 2017, p. UNSP - 102490G.
D. Kita et al., “On-chip infrared sensors: redefining the benefits of scaling”, in Frontiers in Biological Detection: From Nanosensors to Systems Ix, vol. 10081, Bellingham: Spie-Int Soc Optical Engineering, 2017, p. UNSP - 100810F.
L. Li et al., “Flexible waveguide-integrated photodetectors”, in Conference on Lasers and Electro-Optics, San Jose, California, 2017, p. STu1N.1.
Y. Zhang et al., “Broadband Transparent Optical Phase Change Materials”, in Conference on Lasers and Electro-Optics, San Jose, California, 2017, p. JTh5C.4.
S. Serna et al., “Third Order Nonlinear Properties of GeSbS Chalcogenide Waveguides”, in Frontiers in Optics 2017, Washington, D.C., 2017, p. JW3A.72.
H. Zheng et al., “Ultra-thin, High-efficiency Mid-Infrared Transmissive Huygens Meta-Optics”, in Frontiers in Optics 2017, Washington, D.C., 2017, p. FTh4A.2.
T. Gu et al., “Wafer integrated micro-scale concentrating photovoltaics”, Ottawa, Canada, 2017, p. 080004.
H. Lin et al., “Chalcogenide Glass-on-Graphene Photonics”, in Conference on Lasers and Electro-Optics, San Jose, California, 2017, p. STh4I.5.
Y. Zhao, Yin, G., Hu, J., and Lu, M., “Photonic Crystal Enhanced Photothermal Lens”, in Conference on Lasers and Electro-Optics, San Jose, California, 2017, p. STh4N.7.
2016
N. Borodinov et al., “Gradient Polymer Nanofoams for Encrypted Recording of Chemical Events”, Acs Nano, vol. 10. pp. 10716-10725, 2016.
H. Zhang, Kelleher, E., and Hu, J., “2-D Materials for Optics and Photonics”, Optical Engineering, vol. 55. p. 081301, 2016.
S. Novak et al., “Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films”, Jove-Journal of Visualized Experiments. p. e54379, 2016.
Q. Du et al., “Low-loss photonic device in Ge-Sb-S chalcogenide glass”, Optics Letters, vol. 41. pp. 3090-3093, 2016.
F. Jiang et al., “Microstructure, optical properties, and optical resonators of Hf1-xTixO2 amorphous thin films”, Optical Materials Express, vol. 6. pp. 1871-1880, 2016.
L. Li et al., “Amorphous thin films for mechanically flexible, multimaterial integrated photonics”, American Ceramic Society Bulletin, vol. 95. pp. 34-36, 2016.
L. Zhu et al., “Angle-selective perfect absorption with two-dimensional materials”, Light-Science & Applications, vol. 5. p. e16052, 2016.
C. Alonso-Ramos et al., “Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications”, in Silicon Photonics and Photonic Integrated Circuits V, vol. 9891, Bellingham: Spie-Int Soc Optical Engineering, 2016, p. UNSP - 98911J.
D. Kita et al., “Suspended chalcogenide microcavities for ultra-sensitive chemical detection”, in 2016 Ieee Sensors, New York: Ieee, 2016.
S. Novak et al., “Effect of Gamma Exposure on Chalcogenide Glass Films for Microphotonic Devices”, in 2016 Ieee Radiation Effects Data Workshop (redw), New York: Ieee, 2016, pp. 241-244.
P. Su et al., “Irradiation of on-chip chalcogenide glass waveguide mid-infrared gas sensor”, in 2016 Ieee Sensors, New York: Ieee, 2016.
J. Ding et al., “Mid-IR High-index Dielectric Huygens' Metasurfaces”, in Physics and Simulation of Optoelectronic Devices XXIV, vol. 9742, Bellingham: SPIE-Int Soc Optical Engineering, 2016, p. UNSP - 97421I.
J. Hu, Sun, X. Y., Du, Q., Onbasli, M., and Ross, C. A., “Monolithic on-chip nonreciprocal photonics based on magneto-optical thin films”, in Integrated Optics: Devices, Materials, and Technologies Xx, vol. 9750, Bellingham: Spie-Int Soc Optical Engineering, 2016, p. UNSP - 97500W.
H. Lin et al., On-chip Infrared Spectroscopic Sensing: Redefining the Benefits of Scaling. New York: Ieee, 2016.
D. Ma et al., “SiC-on-insulator on-chip photonic sensor in a radiative environment”, in 2016 Ieee Sensors, New York: Ieee, 2016.
X. Sun et al., A SiGe-on-SOI Mach-Zehnder Modulator Enabling Easy Edge Coupling. New York: Ieee, 2016.
X. Sun et al., “SiGe-on-SOI Mach-Zehnder Modulators Enabling Large Mode Size Edge Coupling”, in 2016 Ieee 13th International Conference on Group Iv Photonics (gfp), New York: Ieee, 2016, pp. 42-43.
2015
L. Li et al., “Foldable and Cytocompatible Sol-gel TiO2 Photonics”, Scientific Reports, vol. 5. p. 13832, 2015.
X. Y. Sun et al., “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation”, Acs Photonics, vol. 2. pp. 856-863, 2015.
X. Y. Sun et al., “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation”, Acs Photonics, vol. 2. pp. 856-863, 2015.
O. Ogbuu et al., “Impact of Stoichiometry on Structural and Optical Properties of Sputter Deposited Multicomponent Tellurite Glass Films”, Journal of the American Ceramic Society, vol. 98. pp. 1731-1738, 2015.
H. Lin, Sun, X., Liu, J., and Hu, J., “Diffractive broadband coupling into high-Q resonant cavities”, Optics Letters, vol. 40. pp. 2377-2380, 2015.
J. Hu et al., “Chalcogenide glass microphotonics: Stepping into the spotlight”, American Ceramic Society Bulletin, vol. 94. pp. 24-29, 2015.
2014
Y. Zou et al., “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration”, Advanced Optical Materials, vol. 2. pp. 759-764, 2014.
L. Li et al., “Integrated flexible chalcogenide glass photonic devices”, Nature Photonics, vol. 8. pp. 643-649, 2014.
Y. Chen, Lin, H., Hu, J., and Li, M., “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing”, Acs Nano, vol. 8. pp. 6955-6961, 2014.
Y. Zou, Sheng, X., Xia, K., Fu, H., and Hu, J., “Parasitic loss suppression in photonic and plasmonic photovoltaic light trapping structures”, Optics Express, vol. 22. pp. A1197 - A1202, 2014.
Y. Zou et al., “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates”, Advanced Optical Materials, vol. 2. pp. 478-486, 2014.
A. P. Soliani et al., “Gradient films from shape memory nanofoams for unattended sensing”, Abstracts of Papers of the American Chemical Society, vol. 247. 2014.
V. Singh et al., “Mid-infrared materials and devices on a Si platform for optical sensing”, Science and Technology of Advanced Materials, vol. 15. 2014.
H. Lin et al., “Planar chalcogenide glass mid-infrared photonics”, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics Vii, vol. 8974. 2014.
H. Lin et al., “Substrate-Blind Photonic Integration Based on High-Index Glasses”, Nanophotonics and Micro/Nano Optics Ii, vol. 9277. 2014.
F. Jiang et al., “ZrO2-TiO2 thin films and resonators for mid-infrared integrated photonics”, Integrated Optics: Devices, Materials, and Technologies Xviii, vol. 8988. 2014.
L. Li et al., “Chip-to-chip optical interconnects based on flexible integrated photonics”, Optical Interconnects Xiv, vol. 8991. 2014.
Y. Zou et al., “Demonstration of high-performance, sub-micron chalcogenide glass photonic devices by thermal nanoimprint”, Integrated Optics: Devices, Materials, and Technologies Xviii, vol. 8988. 2014.
2013
H. Lin, Ogbuu, O., Liu, J., Zhang, L., Michel, J., and Hu, J., “Breaking the Energy-Bandwidth Limit of Electrooptic Modulators: Theory and a Device Proposal”, Journal of Lightwave Technology, vol. 31. pp. 4029-4036, 2013.
L. Li et al., “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects”, Journal of Lightwave Technology, vol. 31. pp. 4080-4086, 2013.
L. Bi et al., “Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices”, Materials, vol. 6. pp. 5094-5117, 2013.
P. T. Lin et al., “Si-CMOS compatible materials and devices for mid-IR microphotonics”, Optical Materials Express, vol. 3. pp. 1474-1487, 2013.
N. Duan et al., “ZrO2-TiO2 thin films: a new material system for mid-infrared integrated photonics”, Optical Materials Express, vol. 3. pp. 1537-1545, 2013.
J. Hu, Meyer, J., Richardson, K., and Shah, L., “Feature issue introduction: mid-IR photonic materials”, Optical Materials Express, vol. 3. pp. 1571-1575, 2013.
J. Hu, Li, L., Lin, H., Zhang, P., Zhou, W., and Ma, Z., “Flexible integrated photonics: where materials, mechanics and optics meet [Invited]”, Optical Materials Express, vol. 3. pp. 1313-1331, 2013.
H. Lin et al., “Demonstration of mid-infrared waveguide photonic crystal cavities”, Optics Letters, vol. 38. pp. 2779-2782, 2013.
V. Singh et al., “Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design”, Sensors and Actuators B-Chemical, vol. 185. pp. 195-200, 2013.
H. Lin et al., “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators”, Optics Letters, vol. 38. pp. 1470-1472, 2013.
L. Bi et al., On-chip Nonreciprocal Photonic Devices using Magneto-Optical Oxide Thin Films. 2013.
Y. Zou et al., Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators on nonconventional plastic substrates. 2013.
H. Lin et al., “Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration”, Laser Resonators, Microresonators, and Beam Control Xv, vol. 8600. p. UNSP - 86000K, 2013.
P. T. Lin et al., “Chip-scale Mid- Infrared chemical sensors using air-clad pedestal silicon waveguides”, Lab on a Chip, vol. 13. pp. 2161-2166, 2013.
J. Hu, Li, L., Lin, H., Zou, Y., Gu, T., and Haney, M., “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects”, 2013 Ieee Optical Interconnects Conference. pp. 128-129, 2013.
S. Danto et al., “Nanoscale optical features via hot-stamping of As2Se3 glass”, Optifab 2013, vol. 8884. p. UNSP - 88841T, 2013.
2012
Y. Zou et al., “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films”, Optical Materials Express, vol. 2. pp. 1723-1732, 2012.
J. M. Giammarco et al., “Enrichment polymer systems for FT-IR detection of chemical vapors”, Abstracts of Papers of the American Chemical Society, vol. 244. 2012.
A. P. Soliani et al., “Gradient films from shape memory nanofoams for unattended sensing”, Abstracts of Papers of the American Chemical Society, vol. 244. 2012.
X. Sheng, Hu, J., Michel, J., and Kimerling, L. C., “Light trapping limits in plasmonic solar cells: an analytical investigation”, Optics Express, vol. 20. pp. A496 - A501, 2012.
J. Wang, Zens, T., Hu, J., Becla, P., Kimerling, L. C., and Agarwal, A., “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon”, Applied Physics Letters, vol. 100. 2012.
H. Lin, Yi, Z., and Hu, J., “Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design”, Optics Letters, vol. 37. pp. 1304-1306, 2012.
V. Singh, Hu, J., Agarwal, A., and Kimerling, L. C., “Integrated Optical Sensors”, Ieee Photonics Journal, vol. 4. pp. 638-641, 2012.
P. T. Lin et al., “Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals”, Optics Express, vol. 20. pp. 2124-2135, 2012.
L. Li et al., “Chalcogenide glass based integrated photonics”, Nanophotonics and Micro/Nano Optics, vol. 8564. p. UNSP - 85640T, 2012.
S. Grillanda et al., “Exploiting Photosensitive As2S3 Chalcogenide Glass in Photonic Integrated Circuits”, 2012 14th International Conference on Transparent Optical Networks (icton 2012). 2012.
2011
L. Bi et al., “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators”, Nature Photonics, vol. 5. pp. 758-762, 2011.
A. Canciamilla et al., “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass”, Optics Letters, vol. 36. pp. 4002-4004, 2011.
J. Wang, Hu, J., Becla, P., Agarwal, A., and Kimerling, L. C., “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study”, Journal of Applied Physics, vol. 110. 2011.
J. Giammarco et al., “Polymer enrichment nanocoating for IR-ATR waveguides”, Abstracts of Papers of the American Chemical Society, vol. 242. 2011.
X. Sheng et al., “Design and fabrication of high-index-contrast self-assembled texture for light extraction enhancement in LEDs”, Optics Express, vol. 19. pp. A701 - A709, 2011.
J. D. Musgraves et al., “Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques”, Acta Materialia, vol. 59. pp. 5032-5039, 2011.
F. A. Tal, Dimas, C., Hu, J., Agarwal, A., and Kimerling, L. C., “Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source”, Optics Express, vol. 19. pp. 11951-11962, 2011.
S. Lin, Hu, J., and Crozier, K. B., “Ultracompact, broadband slot waveguide polarization splitter”, Applied Physics Letters, vol. 98. 2011.
J. M. Giammarco et al., “Enrichment polymer layers for detection of volatile vapors by ATR FT-IR”, Abstracts of Papers of the American Chemical Society, vol. 241. 2011.
J. Hu et al., “Development of chipscale chalcogenide glass based infrared chemical sensors”, Quantum Sensing and Nanophotonic Devices Viii, vol. 7945. 2011.
L. Bi, Hu, J., Dionne, G. F., Kimerling, L. C., and Ross, C. A., “Monolithic Integration of Chalcogenide glass/Iron Garnet Waveguides and Resonators for On-chip Nonreciprocal Photonic Devices”, Integrated Optics: Devices, Materials, and Technologies Xv, vol. 7941. 2011.
J. Hu, Musgraves, D., Carlie, N., Agarwal, A., Richardson, K., and Kimerling, L. C., “Photothermal nano-cavities for ultra-sensitive chem-bio detection”, Chemical, Biological, Radiological, Nuclear, and Explosives (cbrne) Sensing Xii, vol. 8018. 2011.
J. Wang, Zens, T., Hu, J., Becla, P., Agarwal, A., and Kimerling, L. C., “Resonant cavity enhancement of polycrystalline PbTe films for IR detectors on Si-ROICs”, Photonic Microdevices/Microstructures for Sensing Iii, vol. 8034. 2011.
J. Giammarco et al., “Towards universal enrichment nanocoating for IR-ATR waveguides”, Chemical Communications, vol. 47. pp. 9104-9106, 2011.
2010
N. Carlie et al., “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges”, Optics Express, vol. 18. pp. 26728-26743, 2010.
J. Hu, Lin, S., Kimerling, L. C., and Crozier, K., “Optical trapping of dielectric nanoparticles in resonant cavities”, Physical Review A, vol. 82. 2010.
J. Hu, “Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy”, Optics Express, vol. 18. pp. 22174-22186, 2010.
J. M. Giammarco et al., “Grafted enrichment polymer layer system for waveguide sensor”, Abstracts of Papers of the American Chemical Society, vol. 240. 2010.
J. M. Giammarco et al., “Design and application of multiple polymer layered systems to facilitate waveguide sensor detection”, Abstracts of Papers of the American Chemical Society, vol. 240. 2010.
V. Raghunathan, Ye, W. N., Hu, J., Izuhara, T., Michel, J., and Kimerling, L. C., “Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies”, Optics Express, vol. 18. pp. 17631-17639, 2010.
J. Wang, Hu, J., Becla, P., Agarwal, A., and Kimerling, L. C., “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform”, Optics Express, vol. 18. pp. 12890-12896, 2010.
J. Hu et al., “Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength”, Optics Letters, vol. 35. pp. 874-876, 2010.
J. Wang, Hu, J., Sun, X., Agarwal, A., and Kimerling, L. C., “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design”, Optics Letters, vol. 35. pp. 742-744, 2010.
K. Richardson et al., “PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS”, Journal of Nonlinear Optical Physics & Materials, vol. 19. pp. 75-99, 2010.
J. Hu et al., “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow”, Optics Express, vol. 18. pp. 1469-1478, 2010.
J. Hu et al., “Towards on-chip, integrated chalcogenide glass based biochemical sensors”, 2010 Conference on Optical Fiber Communication Ofc Collocated National Fiber Optic Engineers Conference Ofc-Nfoec. 2010.
L. Bi, Hu, J., Kimerling, L. C., and Ross, C. A., “Fabrication and characterization of As(2)S(3)/Y(3)Fe(5)O(12) and Y(3)Fe(5)O(12)/SOI strip-loaded waveguides for integrated optical isolator applications”, Integrated Optics: Devices, Materials, and Technologies Xiv, vol. 7604. 2010.
2009
J. Hu, Carlie, N., Petit, L., Agarwal, A., Richardson, K., and Kimerling, L. C., “Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis”, Journal of Lightwave Technology, vol. 27. pp. 5240-5245, 2009.
S. Lin, Hu, J., Kimerling, L. C., and Crozier, K., “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection”, Optics Letters, vol. 34. pp. 3451-3453, 2009.
L. Petit et al., “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses”, Journal of Solid State Chemistry, vol. 182. pp. 2756-2761, 2009.
J. Giammarco et al., “COLL 170-Fabrication and characterization of grafted enrichment layers for evanescent wave sensors”, Abstracts of Papers of the American Chemical Society, vol. 238. 2009.
J. Hu, Sun, X., Agarwal, A., and Kimerling, L. C., “Design guidelines for optical resonator biochemical sensors”, Journal of the Optical Society of America B-Optical Physics, vol. 26. pp. 1032-1041, 2009.
B. Zdyrko et al., “Polymer coatings as enrichment layers for evanescent wave sensors”, Abstracts of Papers of the American Chemical Society, vol. 237. 2009.
L. Petit et al., “Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials”, International Journal of Nanotechnology, vol. 6. pp. 799-815, 2009.
J. Hu et al., Optical loss reduction in HIC chalcogenide glass waveguides via thermal reflow. 2009.
L. Bi, Kim, H. -S., Hu, J., Kimerling, L. C., and Ross, C. A., “As(2)S(3)/Sr(Ti(0.7)Co(0.3))O(3) and As(2)S(3)/Sr(Ti(0.6)Fe(0.4))O(3) strip-loaded waveguides for integrated magneto-optical isolator applications”, in Integrated Optics: Devices, Materials, and Technologies Xiii, vol. 7218, 2009.
S. Lin, Hu, J., Kimerling, L. C., and Crozier, K., Design of Nanoslotted Photonic Crystal Waveguide Cavities for Single Nanoparticle Trapping. 2009.
2008
T. Anderson et al., “Femtosecond laser photo-response of Ge23Sb7S70 films”, Optics Express, vol. 16. pp. 20081-20098, 2008.
J. Hu et al., “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing”, Optics Letters, vol. 33. pp. 2500-2502, 2008.
J. Wang et al., “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films”, Journal of Applied Physics, vol. 104. 2008.
B. Zdyrko et al., “ANYL 47-Polymer coatings for enhancement of chalcogenide based IR sensor”, Abstracts of Papers of the American Chemical Society, vol. 236. 2008.
J. Hu et al., “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films”, Optical Materials, vol. 30. pp. 1560-1566, 2008.
J. Hu, Carlie, N., Petit, L., Agarwal, A., Richardson, K., and Kimerling, L. C., “Demonstration of chalcogenide glass racetrack microresonators”, Optics Letters, vol. 33. pp. 761-763, 2008.
J. Hu et al., “Design, fabrication and integration of HIC glass waveguides on a silicon platform - art. no. 68960Z”, in Integrated Optics: Devices, Materials, and Technologies Xii, vol. 6896, 2008, pp. Z8960 - Z8960.
2007
J. Hu et al., “Low-loss high-index-contrast planar waveguides with graded-index cladding layers”, Optics Express, vol. 15. pp. 14566-14572, 2007.
J. Hu et al., “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides”, Optics Express, vol. 15. pp. 11798-11807, 2007.
J. Hu et al., “Studies on structural, electrical, and optical properties of Cu doped As-Se-Te chalcogenide glasses”, Journal of Applied Physics, vol. 101. 2007.
J. Hu et al., “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor”, Optics Express, vol. 15. pp. 2307-2314, 2007.
J. Hu et al., “Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing - art. no. 64440N”, in Ultrasensitive and Single-Molecule Detection Technologies II, vol. 6444, 2007, pp. N4440 - N4440.
2006
X. C. Sun et al., “Multispectral pixel performance using a one-dimensional photonic crystal design”, Applied Physics Letters, vol. 89. 2006.
K. Peng et al., “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution”, Chemistry-a European Journal, vol. 12. pp. 7942-7947, 2006.
X. C. Sun et al., Multispectral 1-D photonic crystal photodetector. 2006.