System inspired by camel fur harnesses evaporation to keep items cool

Inspired by camels, who keep cool while conserving water using their thick insulating fur, researchers at MIT have now developed a system that could help keep things like pharmaceuticals or fresh produce cool in hot environments, without the need for a power supply.

It turns out that a camel’s coat, or a person’s clothing, can help to reduce loss of moisture while at the same time allowing enough sweat evaporation to provide a cooling effect. Tests have showed that a shaved camel loses 50 percent more moisture than an unshaved one, under identical conditions, the researchers say.

Their paper, written by MIT postdoc Zhengmao Lu, graduate students Elise Strobach and Ningxin Chen, Research Scientist Nicola Ferralis and DMSE Professor Jeffrey Grossman describes a system with a two-layer material to achieve a similar effect. The material’s bottom layer, substituting for sweat glands, consists of hydrogel, a gelatin-like substance that consists mostly of water, contained in a sponge-like matrix from which the water can easily evaporate. This is then covered with an upper layer of aerogel, playing the part of fur by keeping out the external heat while allowing the vapor to pass through.

Hydrogels are already used for some cooling applications, but field tests and detailed analysis have shown that this new two-layer material, less than a half-inch thick, can provide cooling of more than 7 degrees Celsius for five times longer than the hydrogel alone — more than eight days versus less than two.

The system, the researchers say, could be used for food packaging to preserve freshness and open up greater distribution options for farmers to sell their perishable crops. It could also allow medicines such as vaccines to be kept safely as they are delivered to remote locations. In addition to providing cooling, the passive system, powered purely by heat, can reduce the variations in temperature that the goods experience, eliminating spikes that can accelerate spoilage.

Outside References

Related Faculty

News Categories

Research Disciplines