New analysis explains role of defects in metal oxides

Sometimes things that are technically defects, such as imperfections in a material’s crystal lattice, can actually produce changes in properties that open up new kinds of useful applications. New research from a team at MIT shows that such imperfections in a family of materials known as insulating metal oxides may be key to their performance for a variety of high-tech applications, such as nonvolatile memory chips and energy conversion technologies.

The findings are reported this week in the journal Physical Review Letters, in a paper by MIT Associate Professor Bilge Yildiz, Professor and Associate Provost Krystyn Van Vliet, and former postdoc Mostafa Youssef.

In this diagram, the atomic lattice of a crystal of barium oxide is depicted, with atoms of oxygen and barium represented by red and gray spheres. A neutral oxygen vacancy, a place where an oxygen atom should appear in the lattice but is instead replaced by two electrons, is represented by the yellow shape, which depicts the charge density of those electrons. At left, the crystal is seen with no electric field applied, and at right, with an applied field of 21.8 megavolts per centimeter. The distortions of the lattice reveal the effects of that applied electric field.

Read the full article here!

Outside References

Related Faculty

News Categories