Ultralow thermal conductivity in all-inorganic halide perovskites

TitleUltralow thermal conductivity in all-inorganic halide perovskites
Publication TypeJournal Article
Year of Publication2017
AuthorsLee, W, Li, H, Wong, AB, Zhang, D, Lai, M, Yu, Y, Kong, Q, Lin, E, Urban, JJ, Grossman, JC, Yang, P
JournalProceedings of the National Academy of Sciences of the United States of America
Pagination8693 - 8697
Date Published2017/08/15/
ISBN Number0027-8424
Keywordsch3nh3pbi3, halide perovskite, high-temperature, light-emitting-diodes, nanowire, nanowires, phase-transitions, semiconductor, solar-cells, thermal conductivity, thermal transport, thermoelectric-materials, thermoelectrics, transport-properties, yb14mn1-xalxsb11

Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, singlecrystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 +/- 0.05 W.m(-1).K-1), CsPbBr3 (0.42 +/- 0.04 W.m(-1).K-1), and CsSnI3 (0.38 +/- 0.04 W.m(-1).K-1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical-acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S.cm(-1)), and high hole mobility (394 cm(2).V(-1)s(-1)). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.

Short TitleProc. Natl. Acad. Sci. U. S. A.