Towards electroformed nanostructured aluminum alloys with high strength and ductility

TitleTowards electroformed nanostructured aluminum alloys with high strength and ductility
Publication TypeJournal Article
Year of Publication2012
AuthorsRuan, S, Schuh, CA
JournalJournal of Materials Research
Volume27
Issue12
Pagination1638 - 1651
Date Published2012/06//
Abstract

Nanostructured Al-Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, including direct current (DC) and pulsed current (PC), are used to electrodeposit nanostructured Al-Mn alloys, with some PC methods producing significant improvements in film ductility. Transmission electron microscopy observations point to a number of structural advantages induced by PC that apparently ductilize the Al-Mn alloys: (i) grain refinement to the nanocrystalline range without the introduction of a competing amorphous phase, (ii) unimodal nanocrystalline grain size distribution, and (iii) more homogeneous structure. The significant increase in apparent ductility in the PC alloys is also apparently related to stress-or deformation-induced grain growth, which leads to alloys with unique combinations of specific hardness and film ductility.