Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable

TitleShear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable
Publication TypeJournal Article
Year of Publication2013
AuthorsLi, L, Homer, ER, Schuh, CA
JournalActa Materialia
Volume61
Issue9
Pagination3347 - 3359
Date Published2013/05//
Abstract

A mesoscale model, shear transformation zone dynamics (STZ dynamics), is employed to investigate the connections between the structure and deformation of metallic glasses. The present STZ dynamics model is adapted to incorporate a structure-related state variable, and evolves via two competing processes: STZ activation, which creates free volume, vs. diffusive rearrangement, which annihilates it. The dynamical competition between these two processes gives rise to an equilibrium excess free volume that can be connected to flow viscosity via the phenomenological Vogel-Fulcher-Tammann relation in relaxed structures near the glass transition temperature. On the other hand, the excess free volume allows glasses to deform at low temperatures via shear localization into shear bands, even in the presence of internal stress distributions that arise upon cooling after processing. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.