Densification and Strain Hardening of a Metallic Glass under Tension at Room Temperature

TitleDensification and Strain Hardening of a Metallic Glass under Tension at Room Temperature
Publication TypeJournal Article
Year of Publication2013
AuthorsWang, ZT, Pan, J, Li, Y, Schuh, CA
JournalPhysical Review Letters
Date Published2013/09/26/

The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.