Dynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors

TitleDynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors
Publication TypeJournal Article
Year of Publication2013
AuthorsKim, Y, Macfarlane, RJ, Mirkin, CA
JournalJournal of the American Chemical Society
Volume135
Issue28
Pagination10342 - 10345
Date Published2013/07/17/
ISBN Number0002-7863
Abstract

DNA is a powerful tool for programmably assembling colloidal crystals, and has been used to generate nanoparticle superlattices with synthetically adjustable lattice parameters and crystal symmetries. However, the majority of these superlattice structures remain static once constructed, and factors such as interparticle distance cannot be controlled in a facile and rapid manner. Incorporation of these materials into functional devices would be greatly benefitted by the ability to change various aspects of the crystal assembly after the lattice has been synthesized. Herein, we present a reversible, rapid, and stoichiometric on-the-fly manipulation of nanopartide superlattices with allosteric effectors based upon DNA. This approach is applicable to multiple different crystal symmetries, including FCC, BCC, CsCl, and AlB2.